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Biogeography of mutualistic fungi cultivated by leafcutter ants
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Fungal cultivars belong to two clades (Clade-A and Clade-B). The dominant and
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and North America. Admixture between Clade-A populations supports genetic
exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter spe-
cies that cut grass as fungicultural substrate are specialized to cultivate Clade-B
fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A
fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such
that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters special-
ized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is
greatest in South America, but minimal in Central and North America. Maximum cul-
tivar diversity in South America is predicted by the Kusnezov-Fowler hypothesis
that leafcutter ants originated in subtropical South America and only dicot-specia-
lized leafcutter ants migrated out of South America, but the cultivar diversity
becomes also compatible with a recently proposed hypothesis of a Central American
origin by postulating that leafcutter ants acquired novel cultivars many times from
other nonleafcutter fungus-growing ants during their migrations from Central Amer-

ica across South America. We evaluate these biogeographic hypotheses in the light
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1 | INTRODUCTION

Biogeographic distributions provide clues about evolutionary pro-
cesses, such as ancient dispersal and vicariance events that shaped
macroevolutionary patterns, or adaptation and gene flow influencing
microevolutionary processes (Avise, 2009; Brown & Lomolino, 1998;
Wallace, 1876). In mutualistic associations between two partners,
similarities or differences in biogeographic distributions between
codependent partners can facilitate inference of such evolutionary
processes (Alvarez, McKey, Kjellberg, & Hossaert-McKey, 2010;
Hembry & Althoff, 2016; Satler & Carstens, 2016, 2017; Thompson,
2005). Cobiogeographic patterns of mutualistic partners require cau-
tious interpretation, however, particularly regarding congruence and
incongruence of patterns, because evolutionary forces and demogra-
phies can differ markedly between partners (Alvarez et al., 2010;
Chomicki, Janda, & Renner, 2017; Espindola, Carstens, & Alvarez,
2014; Herre, Knowlton, Mueller, & Rehner, 1999; Tian et al., 2015).
For example, population sizes, migration rates, mutation rates and
generation times can differ by orders of magnitude between a host
and a symbiotic partner (Degnan, Lazarus, Brock, & Wernegreen,
2004; Lutzoni & Pagel, 1997; Moran & Wernegreen, 2000; Woolfit
& Bromham, 2003), and dispersal barriers restricting gene flow for
one partner (e.g., a pollinating bee) may not impede gene flow for
the other partner (e.g., the pollinated plant). Such differences in evo-
lutionary forces are particularly pronounced in mutualistic associa-
tions between macro-organisms and fast-evolving microbial
symbionts, or microbial symbionts that do not comigrate with a host,

disperse independently of the host and that are acquired by hosts

of estimated dates for the origins of leafcutter ants and their cultivars.

Attamyces bromatificus, insect-fungus mutualism, Leucoagaricus gongylophorus, Leucoagaricus

weberi, Leucocoprinus gongylophorus, symbiosis

from local microbial populations (e.g., many plant-endophyte, mycor-
rhizal plant-fungus, lichen algal-fungus or host-microbe gut mutu-
alisms) (Dal Grande, Widmer, Wagner, & Scheidegger, 2012;
Kaltenpoth, Roeser-Mueller, Stubblefield, Seger, & Strohm, 2014;
Palmer, Pringle, Stier, & Holt, 2015; Silverstein, Correa, & Baker,
2012; Weiblen & Treiber, 2015; Wornik & Grube, 2010).

In many mutualistic host-microbe associations, a greater disper-
sal ability of the microbial partners results in predictable differences
in population-genetic and biogeographic patterns between hosts and
microbial symbionts, for example lesser genetic differentiation
between populations for the symbiont compared to the host (Hulcr
& Stelinski, 2017; Kellner et al., 2013; Mueller, Mikheyev, Solomon,
& Cooper, 2011; Nobre, Koné, Konaté, Linsenmair, & Aanen, 2011;
Six, 2012), or greater potential for a single symbiont lineage to inter-
act with different allopatric host species (Mueller & Gerardo, 2002;
Palmer et al., 2015; Thompson, 2005; Weiblen & Treiber, 2015). In
contrast, when symbiont dispersal is limited, populations of sym-
bionts are predicted to differentiate across space, as, for example, in
the symbiotic ectomycorrhizal fungus Rhizopogon where limited dis-
persal by vectoring mammals maintains population-genetic structure
between proximate islands (Grubisha, Bergemann, & Bruns, 2007).
As a general rule, however, widely dispersing symbionts are thought
to be associated with a greater diversity of hosts than symbionts
with limited dispersal (Herre et al., 1999; Roy et al., 2008). Biogeo-
graphic analyses of such microbial symbionts are often complicated
by insufficient knowledge of species boundaries of microbial sym-
bionts, requiring high-resolution genetic analyses to differentiate

species and population boundaries (e.g., Douhan, Vincenot, Gryta, &
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specialized to cut grass or dicot leaves, or utilized both types of
leaves for fungiculture. Ac. striatus and Ac. silvestrii reportedly cut
both grass and dicots, with foraging preferences possibly chang-
ing seasonally between grass and dicots (Bucher & Montenegro,
1974; Fowler & Claver, 1991; Fowler, Forti, Pereira-da-Silva, &
Saes, 1986; Gongalves, 1961).

5 | CONCLUSION

Most efforts to elucidate leafcutter ant-fungus associations focused
so far on leafcutter ants in Central and North America (Table Sé),
but these leafcutter symbioses, all of them involving dicot-specialized
leafcutter species, are not representative of the more complex leaf-
cutter symbioses existing across South America (Figures 1 and S1).
Leafcutter species specialized on cultivation of Clade-B fungi occur
only in South America (ranging from Argentina to Colombia;
Figure S1), the highest concentration of Clade-B-cultivating leafcutter
nests found so far is in southern South America (Table S1), and
Clade-A fungi of leafcutter ants are more diverse in South America
than in Central and North America (Figure 1). This co-occurrence of
the greatest leafcutter ant species diversity and greatest cultivar
diversity in southern South America may not be a coincidence, yet
the leafcutter ant-fungus associations in the grasslands of southern
South America are far less understood than those in highly disturbed
Central America forests dominated by weedy leafcutter ant species.
If the Kusnezov-Fowler hypothesis for the origin of leafcutter ants
in subtropical southern South America is correct and accounts for
the concentrated diversity of leafcutter species there (Bacci et al.,
2009; Borgmeier, 1959; Brandao et al., 2011; Delabie et al., 2011;
Della Lucia, 2011; Farji-Brener & Ruggiero, 1994; Fowler, 1983;
Gongalves, 1961; Kusnezov, 1963; Mariconi, 1970; Mueller & Rabeling,
2008; Wild, 2007), a comprehensive cultivar survey in Argentina,
Uruguay, Paraguay, Bolivia and sub-Amazonian Brazil is most likely
to uncover unknown types of leafcutter fungi (i.e., “Clade-C" or
“Clade-D” cultivars), which will inform hypotheses on the diversity of

cultivars available for cultivation at the origin of leafcutter ants.
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