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The fungus-farming ants are a well-studied evolutionary radiation within the subfamily Myrmicinae that
associate with a web of symbionts that span kingdoms. Members of the Apterostigma pilosum species
group cultivate unique basidiomycete fungi belonging to the coral-mushroom family Pterulaceae, a
family of fungi that is distantly related to the Agaricaceae (Leucoagaricus and Leucocoprinus) fungi grown
by most fungus-farmers including other members in the genus Apterostigma (A. auriculatum group and
A. megacephala). A chemical analysis using gas chromatography—mass spectroscopy of the mandibular
gland volatiles of two species — A. dentigerum and A. manni — revealed the presence of an extraordinary
diversity of natural products. Many of these compounds are new to Arthropoda, such as a homologous
series of 3-methyl-2-alkanones, 2-methyl-2-alkenals, and 1-phenyl-2-propanone in A. dentigerum and 1-
phenyl-2-propanol in A. manni. These results identify a remarkable divergence of compounds across the
fungus-growing ants and other members in Myrmicinae. Functions of these natural products are pro-
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posed and discussed.
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1. Introduction

The fungus-farming ants (Hymenoptera: Formicidae: Tribe
Attini: Atta genus-group, referred to in the narrow sense as “attine”
hereafter) (Ward et al., 2015) have been growing fungi for ca.
55—65 million years (Jesovnik et al., 2016; Nygaard et al., 2016;
Schultz and Brady, 2008; Ward et al,, 2015) and have diverged
into distinct lineages. To date, there are more than 250 New World
species across 16 genera (Bolton, 2016; Klingenberg and Brandao,
2009; Sosa-Calvo et al., 2015, 2013). The majority of attine species
cultivate a narrow range of parasol mushrooms in the tribe Leu-
cocoprineae (Basidiomycota: Agaricaceae) but the species in the
genus Apterostigma Mayr are unique in this respect (Schultz et al.,
2015). This lineage of ants has a remarkably diverse fungal prefer-
ence, from Agaricaceae (parasol) to Pterulaceae (coral) fungi.

Apterostigma currently consists of 45 extant and two extinct
species (Lattke, 1999, 1997; Schultz, 2007) and presents a wide
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geographic distribution in the New World tropics, from southern
Mexico to northern Argentina (Lattke, 1997). Aside from extinct
species known from Dominican amber, the genus is not found
around the Caribbean (Fernandez and Sendoya, 2004; Lattke, 1997;
Sosa-Calvo et al., 2015; Wilson, 1988). Studies on Apterostigma
species have ranged widely, from investigating their large genome
size (Tsutsui et al., 2008), to identifying new antibiotics (Carr et al.,
2012; Freinkman et al., 2009; Oh et al., 2009; Van Arnam et al.,
2016) to natural history descriptions (Pitts-Singer and Espelie,
2007). In general, Apterostigma workers are monomorphic and
colonies tend to be small (<100 workers) and usually monogynous
(Black, 1987; Forsyth, 1981; Pitts-Singer and Espelie, 2007; Weber,
1972). Most species of Apterostigma are known to nest in a variety of
places, including in rotten logs, in cavities in the soil, under stones,
or in the leaf litter, at the base and in between leaves of bromeliads,
and on the undersides of palm leaves (Black, 1987; Forsyth, 1981;
Lattke, 1997; Mehdiabadi and Schultz, 2009).

In the Panama Canal region, A. dentigerum Wheeler nest in
exposed, polydomous hanging gardens in creek embankments,
whereas a single colony of A. manni Weber was collected from six
underground chambers in the forest (Adams unpublished). Both
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ant species grow their fungal cultivars in dense sponge-like mats,
typical of fungus-farming ant species; however, veil-like fungal
structures are also seen in both species. The veil is used to cover the
exposed areas of the fungus garden in A. dentigerum, while it was
found lining the tunnels between chambers in A. manni. Apter-
ostigma species that grow exposed hanging gardens are able to
protect their cultivars from microbial pathogens that are constantly
bombarding the outer surface of the fungal garden. It has been
suggested that this protection is achieved due to the association
with co-evolved antibiotic-producing bacterial symbionts grown
on the exoskeleton of the ants (Caldera and Currie, 2012), but may
also be augmented by ant derived chemical compounds (Poulsen
et al,, 2002; Vieira et al., 2012).

Studying the function of ant-derived compounds provides
unique insight into the biology of the ants. The mandibular glands
of ants have been found to be the source of numerous volatile
organic compounds strongly associated with behavior (Hernandez
et al., 1999). Through extensive exploration of the communication
systems in the higher attines — such as the leaf cutting genera Atta
and Acromyrmex — it has been discovered that many of these nat-
ural products are common among other fungus-farming ants as
well (Adams unpublished). Relatively small and simple aliphatic
ketones such as 4-methyl-3-heptanone, 2-heptanone, and 3-
octanone have been demonstrated to act as alarm pheromones in
many species (de Lima Mendongca et al., 2009; Jackson and Morgan,
1993; Moser et al., 1968). However, ant-derived compounds are not
only used in communication but also help to transform the ants'
living surroundings by killing microbes in the nest soil and sup-
pressing entomopathogens attacking ant brood and workers
(Fernandez-Marin et al., 2006; Vander Meer, 2012). Ants depend
upon a suite of compounds that perform various functions. For
example, the metapleural glands of many species have been found
to produce antimicrobial compounds used to control and eliminate
the presence of fungal pathogens (Bot et al, 2002; de Lima
Mendongca et al., 2009; Ferndndez-Marin et al., 2015). However,
except for an investigation into Apterostigma metapleural glands by

Table 1
Specimens used in the chemical analysis.

Vieira et al., 2012, the chemical ecology of this genus and other
paleoattines has largely been ignored.

In this study, we focus on the mandibular gland compounds of
two species in the Apterostigma pilosum species group,
A. dentigerum and A. manni. Although A. dentigerum and A. manni
belong to the same species group and tend coral fungal culti-
vars—albeit from different clades (G2 and G4) (Dentinger et al.,
2009; Villesen et al., 2004)—they produce distinct and different
natural products.

2. Materials and methods
2.1. Collection and identification

Colonies were collected live from two sites in Parque Soberania,
Panama, on Pipeline Road, Km 6 (9.1645—79.74557) and Rio La Seda
(9.1562—79.73447), A. manni and A. dentigerum respectively (see
Table 1 for collection codes). Samples of workers were taken from
the lab colonies no more than two months following their collec-
tion date. Specimens were identified to species by using Lattke's
key to species (1997) and by direct comparison with specimens
deposited in the insect collection of the Smithsonian Institution
National Museum of Natural History, in Washington DC.

2.2. Dissections

Methanol extracts of pooled samples of various body sections
and glands (ant heads, thoraxes, abdomens, and whole ants;
mandibular glands, propharyngeal glands, and postpharyngeal
glands) were analyzed with gas chromatography—mass spec-
trometry (GC—MS), with the goal of identifying the mandibular
gland compounds and determining their glandular origin.

Before dissection, ants were anesthetized on ice and rinsed in
ethanol and methanol for five seconds to remove exoskeleton
compounds. Specimens were either trisected or the head glands
dissected. Dissections of mandibular, propharyngeal and

Species

Colony ID

Collection code

Body part (# ants)

Compounds present?

Apterostigma dentigerum

Apterostigma manni

RMMA150518-01

RMMA150525-10

JS150511-03

JS150511-01

J5150509-01

RMMA150523-05

RMMA18-01-H Head (19) Yes
RMMA18-01-T/A Thorax and abdomen (20) No
RMMA25-H Head (10) Yes
RMMA25-T Thorax (10) No
RMMA25-A Abdomen (10) No
RMMA25-POST Postpharyngeal gland (10) No
RMMA25-PRO Propharyngeal gland (10) No
RMMA25-MAN Mandibular gland (10) Yes
JS11-03-H Head (11) Yes
JS11-03-T/A Thorax and abdomen (11) No
JS11-03-POST Postpharyngeal gland (10) No
JS11-03-PRO Propharyngeal gland (10) No
JS11-03-MAN Mandibular gland (10) Yes
JS11-01-WA Whole ant (10) Yes
JS11-01-POST Postpharyngeal gland (10) No
JS11-01-PRO Propharyngeal gland (10) No
JS11-01-MAN Mandibular gland (10) Yes
JS09-01-H Head (8) Yes
JS09-01-T/A Thorax and abdomen (8) No
RMMA23-05-WA Whole ant (5) Yes
RMMA23-05-H9 Heads (9) Yes
RMMAZ23-05-H5 Heads (5) Yes
RMMA23-05-T/A Thorax and abdomen (9) No
RMMA23-05-T Thorax (5) No
RMMA23-05-A Abdomen (5) No
RMMA23-05-POST Postpharyngeal gland (17) No
RMMA23-05-PRO Propharyngeal gland (8) No
RMMA23-05-MAN Mandibular gland (17) Yes
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postpharyngeal glands were performed under a stereoscopic mi-
croscope in distilled water on glass slides, and washed with ethanol
and methanol. Glands were dissected with forceps rinsed with
solvents (ethanol and methanol), propharyngeal and post-
pharyngeal glands were separated by cutting with sterile surgical
blades. After removal from the head, glands were washed in a fresh
portion of water. All samples were collected in an equal quantity of
20 ul methanol. GC—MS analyses were performed on the methanol
extracts of 8—19 ant heads as well as 10—17 excised glands (see
Table 1 for complete list of all analyzed ant parts).

2.3. Chemical analysis

Gas chromatography—mass spectrometry was performed at
Virginia Military Institute in the EI mode using a Shimadzu QP
2010 GC/MS equipped with a RTX-5, 30 m x 0.25 mm i.d., column
(Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823). The
instrument was programmed from 60 to 250 °C at 10 °C/min and
held at the upper temperature for 30 min.

3. Results

The objective of this study was to identify the mandibular gland
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volatiles of two closely related Apterostigma species. The chro-
matograms illustrate the retention times and relative abundance of
the compounds of interest, highlighting the striking difference
between A. dentigerum and A. manni (Fig. 1); peaks not marked with
a number are due to chromatographic background noise and do not
represent ant-derived compounds. Samples that included only the
thorax and/or abdomen did not have the volatiles listed in Fig. 1, nor
did the pro- and postpharyngeal gland samples (Table 1).

3.1. Apterostigma dentigerum

The methanol extracts of all samples of the mandibular glands of
A. dentigerum revealed the presence of numerous volatile com-
pounds (Fig. 1). The mass spectra of three of the components, peaks
5,7 and 9, showed fragments at M-15 and m/z = 72 suggestive of 3-
methyl-2-alkanones, and matched the spectra provided for 3-
methyl-2-octanone (5), 3-methyl-2-nonanone (7) and 3-methyl-
2-decanone (9) (Burger et al., 2008). Additionally, the structures of
peak 5, 7, and 9 were confirmed by direct comparison with syn-
thetic samples (Radulovi¢ et al., 2014).

Peaks 1, 4, 6a, 10, and 11 seemed to be a homologous series of
unsaturated compounds (M = 112, 126, 140, 154, and 168
respectively), having a characteristic fragment at m/z = 97 in their
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Fig. 1. GC/MS chromatograms of the mandibular gland volatiles from A. dentigerum and A. manni, respectively. Peaks not marked with a number are due to chromatographic

background noise and do not represent ant-derived compounds.
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mass spectra. Following microhydrogenation of the mixture over a
small amount PtO,, peak 11 appeared to have been reduced to 2-
methyl-1-decanol. The mass spectrum of peak 11 matched the
spectrum obtained for (E)-2-methyl-2-decenal (11) (Petroski et al.,
2011), while the mass spectrum of peak 4 matched that reported for
(E)-2-methyl-2-heptenal (4) (US Department of Commerce NIST,
2016). The Horner-Emmons condensation of butanal, hexanal,
heptanal or octanal with triethyl 2-phosponopropionate followed
by lithium aluminum hydride reduction and subsequent pyridinum
chlorochromate oxidation provided synthetic samples of (E)-2-
methyl-2-hexenal (1), (E)-2-methyl-2-octenal (6a), (E)-2-methyl-
2-nonenal (10), and (E)-2-methyl-2-decenal (11) respectively
(Jones et al., 1977; Naef and Jaquier, 2006). Additionally, the gas
chromatographic retention time as well as the mass spectra of peak
8 appeared to indicate (Z)-2-methyl-2-nonenal (8), and isomer of
compound 10, although further investigation is necessary to
confirm the identity of this compound. The mass spectra and gas
chromatographic retention times of synthetic samples of (E)-2-
methyl-2-alkenals were identical to those of peaks 1, 4, 6a, 10,
and 11 respectively by direct comparison.

Finally, the mass spectra of peaks 2 and 3 matched that reported
for 1-octen-3-one (2) and 3-octanone (3), while treatment of the
extract with a small amount of ethereal diazomethane revealed the
presence of octanoic, nonanoic, and decanoic acid as their methyl
esters (US Department of Commerce NIST, 2016). Careful exami-
nation of the region between peaks 6 and 7 showed the presence of
ions at m/z = 91 and m/z = 134 congruent with one another and
representing the presence of 1-phenyl-2-propanone (6b) (US
Department of Commerce NIST, 2016).

3.2. Apterostigma manni

The methanol extracts of the mandibular glands of A. manni
revealed a relatively simple mixture without the complexity seen in
A. dentigerum (Table 1). Examination of the mass spectra revealed
the presence of the 1-octen-3-ol (12) and 3-octanol (13) along with
1-phenyl-2-propanol (14) (US Department of Commerce NIST,
2016).

4. Discussion

Our chemical analyses highlight many differences between the
mandibular gland chemistry of A. dentigerum and A. manni,
prompting further questions concerning the function of these
compounds. The leaf cutting ant genera (i.e., Atta and Acromyrmex)
share many mandibular gland volatiles across species, suggesting
a conservation of compounds between the two sister lineages (de
Lima Mendonga et al., 2009, and references therein). For this
reason, we expected some degree of conservation in mandibular
compounds between these Apterostigma species as well. Instead,
we found that the mandibular glands of A. dentigerum contained a
series of methyl-branched aldehydes and ketones that were not
detected in A. manni. However, three of the 14 compounds found
in A. dentigerum (1-octen-3-one (2), 3-octanone (3) and 1-phenyl-
2-propanone (6b)) appeared in their reduced forms and as the
only detectable volatile compounds in A. manni (1-octen-3-ol (12),
3-octanol (13), and 1-phenyl-2-propanol (14)). This is the first
time that either compound 6b or 14 have been reported from any
member of the phylum Arthropoda. The presence of 3-oxygenated
octanes in both species is not surprising since many members of
the subfamily Myrmicinae produce such compounds as major
components of their mandibular glands (Attygalle and Morgan,
1984; Cammaerts et al.,, 1983; Crewe et al., 1972; Crewe and
Blum, 1972; de Lima Mendonc¢a et al., 2009; Jackson and
Morgan, 1993).

Mandibular gland secretions are known to play a role in
communication (Blum, 1969). 3-octanone (3) functions as an alarm
pheromone in the leaf cutting ant species, Atta texana (Moser et al.,
1968), Acromyrmex octospinosus, and Acromyrmex landolti (Sainz-
Borgo et al., 2013) and have been identified in a number of other
higher attine species (Trachymyrmex cornetzi, Trachymyrmex sep-
tentrionalis, Trachymyrmex urichii, and Sericomyrmex amabilis)
(Adams et al., 2012; Crewe et al., 1972). 3-octanol (13) has been
found in the mandibular glands of forty-two species of Myrmica
and Crematogaster (Cammaerts et al., 1985; Longhurst et al., 1980)
and is also used in colony communication and serves as an
attractant in Myrmica ants (Cammaerts et al., 1985). Compounds 3
and 13 appear to be broadly conserved alarm pheromones across
the myrmicine ants (Cammaerts et al., 1983; Crewe et al., 1972; de
Lima Mendonga et al., 2009) including a number of attine genera
(Adams et al.,, 2012; Blum, 1981). Additionally, 1-octen-3-one (2)
and 1-octen-3-ol (12) have not yet been reported from ants but are
recognized as components of fungal odor (Davis et al., 2013; Steiner
et al., 2007).

A homologous series of 3-methyl-2-alkanones (3-methyl-2-
octanone (5), and 3-methyl-2-nonanone (7) 3-methyl-2-decanone
(9)), was identified from the mandibular gland extracts of
A. dentigerum (Table 1). Volatiles (9) and (5) have not been reported
from arthropods and all three 3-methyl-2-alkanones have been
found in Bengal tiger urine (Burger et al., 2008). In A. dentigerum, 3-
methyl-2-nonanone (7) was a major component of the mandibular
gland volatiles (Table 2) and has previously been reported from the
same gland of distantly related Diacamma (Ponerinae) ant species
(Morgan et al., 1999). Although their function remains to be eluci-
dated, these compounds may serve in a communicative capacity in
A. dentigerum, given that low molecular weight aliphatic alcohols
and ketones such as these have been found to act as semi-
ochemicals in many ant species (Brown et al., 1970; Jackson and
Morgan, 1993; Moser et al., 1968).

Independent of communicative functions, some fungus-
farming ant derived volatiles act as antimicrobials (de Lima
Mendonga et al,, 2009; Knapp et al.,, 1994; Rodrigues et al.,
2008). We report a series of homologous 2-methyl-2-alkenals
from the mandibular glands of A. dentigerum (Table 1, 1, 4, 6a, 8,
10, 11). These volatile compounds have never before been detec-
ted in the phylum Arthropoda, but are found in lemon peel extract
(Naef and Jaquier, 2006). However, related compounds citral and
geronial serve as antifungal and antibacterial agents in leaf cutting

Table 2
Relative amount of mandibular gland compounds.
Peak # Compound A. dentigerum A. manni
1 (E)-2-methyl-2-hexenal (0.64) -
2 1-octen-3-one (0.09) -
3 3-octanone (0.26) —
4 (E)-2-methyl-2-heptenal (0.26) -
5 3-methyl-2-octanone (0.05) -
6a (E)-2-methyl-2-octenal (0.79) -
6b 1-phenyl-2-propanone ™ —
7 3-methyl-2-nonanone (0.76) -
8 (Z)-2-methyl-2-nonenal (0.20) -
9 3-methyl-2-decanone (0.18) —
10 (E)-2-methyl-2-nonenal (0.22) -
11 (E)-2-methyl-2-decenal (1) -
12 1-octen-3-ol — (0.56)
13 3-octanol — (1)
14 1-phenyl-2-propanol - (0.33)
15 Octanoic acid (@) —
16 Nonanoic acid ™ —
17 Decanoic acid (@) -

Asterisk (*) indicates only a trace amount was found and hyphen (—) indicates
absence.
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ant species (de Lima Mendongca et al., 2009; Knapp et al., 1994).
These effective antimicrobials (Onawunmi, 1989) may provide
insight into the function of the 2-methyl-2-alkenals, given their
structural similarity. Citral and geronial — both structural isomers
of compound 11 — possess a conjugated carbonyl functional group
that is highly reactive and volatile in nature; thus, the ant-derived
2-methyl-2-alkenals may prove to be a part of the A. dentigerum
chemical defenses. Disk diffusion assays suggests both (E)-2-
methyl-2-octenal (6a) and (E)-2-methyl-2-decenal (11) are
powerful growth-inhibiting agents effective against both Gram-
positive and Gram-negative bacterial strains (Hogan unpub-
lished), although further analysis is necessary to determine the
efficacy of these compounds.

Our chemical analyses also revealed the presence of octanoic,
nonanoic, and decanoic acids (Table 1, 15, 16, 17) from the
mandibular glands of A. dentigerum. The strong antibacterial and
antifungal activity of medium chain carboxylic acids of this type has
previously been reported by Koidsumi (1957), and have been found
to be a major component of the metapleural glands of Acromyrmex
leaf cutting ants (Bot et al., 2002). Recent investigations have
demonstrated the effectiveness of hexanoic and octanoic acid in the
inhibition of various bacterial and fungal strains (de Lima
Mendoncga et al., 2009), leading to the hypothesis that com-
pounds 15, 16, and 17 may serve a similar function in A. dentigerum.

Within the genus Apterostigma, the A. pilosum species group
cultivates a basidiomycete fungus belonging to the coral-
mushroom family Pterulaceae (G2 and G4 clades), while others
cultivate lepiotaceous (Agaricaceae parasol mushroom) cultivars, as
typical in many other fungus-farming ant species (Schultz and
Brady, 2008). Most recently, it has been discovered that Apter-
ostigma megacephala Lattke, a relictual species of fungus-farming
ant, is the only non-leafcutter ant that cultivates the highly
derived Leucoagaricus gongylophorus fungus, known to be only
associated with the leaf cutting ant genera Acromyrmex and Atta
(Schultz et al.,, 2015). The flexible cultivar acquisition behavior
among Apterostigma species may enable a colony to re-acquire
cultivars after garden loss or purge inferior cultivars that are
locally maladapted (Kellner et al., 2013). Novel ant—fungus com-
binations adapted to varying environmental conditions likely pro-
vide evolutionary advantages (Himler et al., 2009), and the unusual
mandibular gland chemistry of A. dentigerum may be related to the
cultivation of the unique G2 pterulaceous fungi.

Additionally, compounds acting as generalized antimicrobials
in A. dentigerum could have beneficial consequences, as the pro-
tection of the fungal garden and ant workers against microbial
pathogens is of paramount importance to the colony's survival.
Apterostigma dentigerum fosters an antibiotic-producing Pseudo-
nocardia bacterium on its exoskeleton, a symbiotic relationship
that aids the ants in the defense against Escovopsis fungal patho-
gens (Caldera and Currie, 2012; Currie et al., 1999; Gerardo et al.,
2006; Mueller et al., 1998). However, this relationship may only
protect the fungal garden from one or a few of many threats
(Fernandez-Marin et al., 2009; Sen et al., 2009). The exposed
hanging gardens of A. dentigerum are constantly challenged with
numerous microbial pathogens (Chapela et al., 1994; Munkacsi
et al.,, 2004, Villesen et al., 2004), therefore it would not be sur-
prising if A. dentigerum mandibular gland compounds function as
antimicrobials used to defend against a broad range of microbial
pathogens.

5. Conclusions
This investigation into the chemical ecology of the A. pilosum

species group has demonstrated unique characteristics that
distinguish these species from the rest of the fungus-farming ants.

While the results of this study have revealed the presence of many
new mandibular gland compounds, the functions of these natural
products remain to be determined. Preliminary microbiological
assays with the series of 2-methyl-2-alkenals from A. dentigerum
suggest antimicrobial efficacy, and research in this area is forth-
coming. The phylogenetic relationships within the A. pilosum spe-
cies group, and other Apterostigma species, are currently being
reconstructed, which will allow the examination of chemical trait
evolution across the entire genus. In order to unravel the natural
history and phylogeny of the fungus-farming ants, more research
must be conducted to link their chemical ecology with their
phylogenetic placement.
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